Novel Imaging Techniques in Intraocular Tumours

Hatem Krema, MD
Director, Ocular Oncology Service
Princess Margaret Cancer Centre
Department of Ophthalmology and Vision Science
University of Toronto
CANADA

Disclaimer

The author does not have any financial affiliation with any organization that may have a direct or indirect connection to the content of this presentation.
I- Multispectral Imaging

Multispectral Imaging

- Uses a range of discrete monochromatic LED light sources (non laser).
- Creates a series of en face spectral slices throughout the retinal thickness.
- Variable absorption, reflectance and scatter spectra of melanin, haemoglobin, and lipofuscin.
- Enhanced visualization of retinal architecture including RPE and choroid.
Multispectral Imaging

Uses 12 wavelengths (520 – 900 nm), flashed in pairs, separated by milliseconds

Spectral dissection of retinal layers:

- **Greens**: superficial structures (Epiretinal membrane)
- **Yellows – Ambers**: Mid retinal structures (Retinal vessels)
- **Reds, Deep Reds, Infrareds**: Deep retinal structures (RPE)
- **Scleral illumination**: Choroidal structures
Choroidal Mode 2

Pilot Study: Multispectral imaging of 13 choroidal tumours

Yellow

Amber

Deep red

Near infrared

Infrared
1- Better definition of tumour edges

deep red

Infrared

1- Better definition of tumour edges

Yellow

Deep red
2- Visualization of Lipofuscin

3- Choroidal vessels near tumour base
(No dye injection)
3- Choroidal vessels near tumour base (No dye injection)

Multispectral imaging of choroidal tumours:

1- Improved delineation of tumour boundaries.
2- Enhanced visualization of orange pigment.
3- Imaging of choroidal vasculature without dye injection
II- Hyperspectral Imaging

Hyperspectral Imaging

• Employs a tuneable laser source.

• Generates extensive range of wavelengths, with 1 nm increment from 530 to 800 nm.

• Limitations:
 - Motion artefacts
 - Limited field of view
Analysis of the absorption spectra could enable objective identification of the “spectral signature” of each molecule, and differentiation between clinically similar deposits.

III- Retinal Perfusion after Radiotherapy
Onset of radiation retinopathy is highest at 18-24 months post radiotherapy

Retinal Blood Flow with Doppler SD-OCT

Principle:
D-OCT provides true velocity information, which can determine total volume flow.

Objective:
Non-invasive + earliest detection of radiation-induced ischemia prior to any clinical or angiographic evidence

Methods:
Pre- and Post brachytherapy assessment of 20 patients. Patients are followed for 2 years.
Novel Imaging Techniques in Intraocular Tumours

Hatem Krema, MD
Director, Ocular Oncology Service
Princess Margaret Cancer Centre

Department of Ophthalmology and Vision Science
University of Toronto
CANADA